Search results

Search for "biological fluids" in Full Text gives 36 result(s) in Beilstein Journal of Nanotechnology.

Multiscale modelling of biomolecular corona formation on metallic surfaces

  • Parinaz Mosaddeghi Amini,
  • Ian Rouse,
  • Julia Subbotina and
  • Vladimir Lobaskin

Beilstein J. Nanotechnol. 2024, 15, 215–229, doi:10.3762/bjnano.15.21

Graphical Abstract
  • the mechanisms underlying the formation of NP protein corona, a complex layer of biomolecules that surrounds NPs upon their exposure to biological fluids [19][20]. It is widely recognized that composition and configuration of the protein corona play a crucial role in determining the biochemical
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • specifically with antigens, which are responsible for the production or induction of specific antibodies [17]. The specific binding of antigens to their receptors activates a signaling pathway in B-cells, which leads to the secretion of antibodies into biological fluids [18]. Antibodies have four polypeptide
  • copper-free click reaction to decorate fluorescent silica NPs with bicyclononyne. They exposed the NPs to media that mimicked in vitro culture conditions (10% serum) and biological fluids present in vivo (100% serum). They observed an increase in size and a slight decrease in negative charge in serum
PDF
Album
Review
Published 04 Sep 2023

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • medical device for administering drugs and collecting biological fluids, all while reducing sharps-related risks to healthcare professionals. To date, microneedle patches are relatively simple with a one-size-fits-all approach, regardless of patient demographic and injection site. 3D microfabrication
PDF
Album
Perspective
Published 15 Aug 2023

Interaction between honeybee mandibles and propolis

  • Leonie Saccardi,
  • Franz Brümmer,
  • Jonas Schiebl,
  • Oliver Schwarz,
  • Alexander Kovalev and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2022, 13, 958–974, doi:10.3762/bjnano.13.84

Graphical Abstract
  • to reduce adhesion [16]. Therefore, fresh, untreated bee mandibles were studied in the frozen state, as cryo-SEM has been reported to be a successful method for visualizing biological fluids such as lipids and water-based solutions [26]. Cryo-SEM was performed as described in section “Surface
PDF
Album
Full Research Paper
Published 14 Sep 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • healthcare to analyse changes in the concentration of H2O2 in biological fluids. Also, a promising option to study more complex analytes and to significantly increase the sensitivity is the use of this nanostructured CuO sensor as part of a multisensor system based on several types of metal oxides (e.g
PDF
Album
Full Research Paper
Published 03 May 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • excretion [33]. When a TiO2 nanomaterial circulates through the body, certain biomolecules (such as proteins, phospholipids, or DNA contained in biological fluids or present in living cells) get adsorbed onto the surface of it very quickly, which is termed as “protein corona (PC)” formation. This protein
PDF
Album
Review
Published 14 Feb 2022

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • their high cost and fabrication difficulties, simpler solid microneedles coated with drugs are currently attracting more attention for drug delivery. However, this design will not be suitable for extracting biological fluids. In addition, controlling the dosage of drugs for delivery will be limited by
PDF
Album
Review
Published 13 Sep 2021

Fate and transformation of silver nanoparticles in different biological conditions

  • Barbara Pem,
  • Marija Ćurlin,
  • Darija Domazet Jurašin,
  • Valerije Vrček,
  • Rinea Barbir,
  • Vedran Micek,
  • Raluca M. Fratila,
  • Jesus M. de la Fuente and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2021, 12, 665–679, doi:10.3762/bjnano.12.53

Graphical Abstract
  • biological fluids, obtained from animal experiments. A multimethod approach was used to examine their behaviour and transformation under experimental conditions relevant for in vivo settings by performing dynamic light scattering (DLS), electrophoretic light scattering (ELS), graphite furnace atomic
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • affect the uptake. Once NPs enter biological fluids (blood or culture medium with serum), proteins immediately adsorb onto the surface of the NPs, forming a layer called protein corona (PC). The PC changes the surface composition and structure of NPs, directly influences the cell–NP interactions
  • involved in PC formation. Hence, coating of MNPs with BSA can be considered as a PC per se. As a dysopsonin protein, albumin promotes a prolonged blood circulation time through blocking the recognition by macrophages [42]. A comprehensive characterization of nanoparticles in biological fluids is, therefore
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • Protein Data Bank (PDB) service (see Supporting Information File 1) [28][29][30][31][32]. Discussion The conditions in biological systems can alter the properties of nanoparticles. Salts of biological fluids influence surface charges, which leads to destabilization and aggregation of nanoparticles [18
  • membrane potential (Figure 4); and a concentration of 0.5 mg/mL was used in laser correlation spectroscopy measurements in biological fluids (Figure 6 and Figure 8). Thus, γ-Fe2O3 nanoparticles in a concentration range of 1 µg/mL to 1 mg/mL were used in biological experiments and a higher concentration
  • penetrate the blood–brain barrier than uncoated ones. Glutamate adsorbed on γ-Fe2O3 nanoparticles in water is expected to be partially released from the nanoparticle surface after contact with biological fluids. Application of magnetic fields can make this a targeted process. Vice versa, γ-Fe2O3
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • invested nowadays in developing coatings with certain characteristics, depending on the final application (e.g., biocompatibility/low toxicity, targeting a certain cell/compartment/molecule, or stability in biological fluids) [16]. SPIONs are superparamagnetic, which means that they are small enough to
  • biological fluids at physiological pH values and which remain stable with low toxicity in vitro [38][46][98][99][100][101][102][103]. Still, Hong and collaborators [104] stress the fact that we should pay more attention to the charge effects of SPIONs because not all types of cytotoxicity can be easily and
PDF
Album
Review
Published 27 Jul 2020

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • aggregates in specific exposing conditions by platelet-independent pathways and stresses the importance of the need to characterise nanomaterials in relevant biological fluids (in this case blood plasma or blood). This result should be regarded with concern, since aggregates might induce vessel occlusion in
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

  • Valentina Francia,
  • Daphne Montizaan and
  • Anna Salvati

Beilstein J. Nanotechnol. 2020, 11, 338–353, doi:10.3762/bjnano.11.25

Graphical Abstract
  • biological fluids such as serum. This represents a further issue since the charge of nanomaterials tends towards neutrality upon corona formation, once they are applied in a biological environment. Thus, nanoparticles that in water possess different charges might end up having all a similar charge, close to
  • , it is important to characterize the nanoparticle dispersion in the biological media in which the nanomedicine will be applied, and to monitor potential agglomeration and stability over time. Additionally, studies in which nanoparticles are incubated on cells without serum or other biological fluids
  • also the subsequent mechanisms of internalization [18][62][63][64][65][68][69]. Similar considerations should be made when characterizing the uptake of nanomedicines administered via other routes. In these cases biological fluids other than serum should be used [185][194]. On a more complex level, it
PDF
Album
Review
Published 14 Feb 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Small protein sequences can induce cellular uptake of complex nanohybrids

  • Jan-Philip Merkl,
  • Malak Safi,
  • Christian Schmidtke,
  • Fadi Aldeek,
  • Johannes Ostermann,
  • Tatiana Domitrovic,
  • Sebastian Gärtner,
  • John E. Johnson,
  • Horst Weller and
  • Hedi Mattoussi

Beilstein J. Nanotechnol. 2019, 10, 2477–2482, doi:10.3762/bjnano.10.238

Graphical Abstract
  • stability and tumour accumulation of curcumin [17]. Overall, there is a consensus that using colloidally stable nanoparticles is crucial for understanding and controlling cellular uptake, because materials that are prone to aggregation show higher non-specific interactions with biological fluids and cell
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Dynamics of superparamagnetic nanoparticles in viscous liquids in rotating magnetic fields

  • Nikolai A. Usov,
  • Ruslan A. Rytov and
  • Vasiliy A. Bautin

Beilstein J. Nanotechnol. 2019, 10, 2294–2303, doi:10.3762/bjnano.10.221

Graphical Abstract
  • moments of the particle. However, if nanoparticles remain distributed in biological fluids (blood, serum), the intensity of AMF energy absorption is determined also by the rotation of the nanoparticles as a whole in a viscous liquid [25][26]. Various mathematical approaches are necessary for a theoretical
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2019

Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration

  • Nashrawan Lababidi,
  • Valentin Sigal,
  • Aljoscha Koenneke,
  • Konrad Schwarzkopf,
  • Andreas Manz and
  • Marc Schneider

Beilstein J. Nanotechnol. 2019, 10, 2280–2293, doi:10.3762/bjnano.10.220

Graphical Abstract
  • our knowledge. Nanoparticle interaction with mucin The stability of NPs within biological fluids is an essential factor with respect to their potential biological effects [53]. This holds especially true for the interaction of the particles with mucus. To estimate this, a mucin solution was chosen as
PDF
Album
Full Research Paper
Published 19 Nov 2019

Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles

  • Katrin Partikel,
  • Robin Korte,
  • Dennis Mulac,
  • Hans-Ulrich Humpf and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 1002–1015, doi:10.3762/bjnano.10.101

Graphical Abstract
  • few NPs have made it to clinical trials or market maturity [2][3]. One possible reason is the limited understanding of the interaction occurring at the interface between NPs and the physiological surrounding [3]. Once in contact with biological fluids, such as blood, proteins adsorb onto the surface
  • incubation medium create a saturated NP surface for both biological fluids and a further increase in serum content does not lead to changes in the corona formation. Accordingly, this allowed us to reliably address the aforementioned research topic without considering the variabilities caused by phenomena
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2019

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

  • Boris N. Khlebtsov,
  • Andrey M. Burov,
  • Timofey E. Pylaev and
  • Nikolai G. Khlebtsov

Beilstein J. Nanotechnol. 2019, 10, 794–803, doi:10.3762/bjnano.10.79

Graphical Abstract
  • designed parameters [3][4]. The AuNRs themselves can serve as contrast agents for two-photon [5][6], photoacoustic [7][8][9] and SERS [10][11] imaging, and for plasmonic photothermal therapy (PPT) [12][13]. However, the as-prepared AuNRs demonstrate high toxicity [14][15] and low stability in biological
  • fluids because of a cetyltrimethylammonium bromide (CTAB) bilayer on the AuNR surface, which is a necessary agent in the synthesis method [16]. The coating of the nanoparticles with polymeric or inorganic shells and further functionalization with target molecules can help to overcome this drawback
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Self-assembly of chiral fluorescent nanoparticles based on water-soluble L-tryptophan derivatives of p-tert-butylthiacalix[4]arene

  • Pavel L. Padnya,
  • Irina A. Khripunova,
  • Olga A. Mostovaya,
  • Timur A. Mukhametzyanov,
  • Vladimir G. Evtugyn,
  • Vyacheslav V. Vorobev,
  • Yuri N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2017, 8, 1825–1835, doi:10.3762/bjnano.8.184

Graphical Abstract
  • biologically important substrates and for analyzing biological fluids. Tryptophan has a maximum emission in water at 348 nm. The position of the maximum strongly depends on the polarity of the solvent [43]. The emission maximum of the compounds 8 and 9 in water was observed at 415 nm. It was shifted to the red
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2017

Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization

  • Mohamed Hamed Misbah,
  • Mercedes Santos,
  • Luis Quintanilla,
  • Christina Günter,
  • Matilde Alonso,
  • Andreas Taubert and
  • José Carlos Rodríguez-Cabello

Beilstein J. Nanotechnol. 2017, 8, 772–783, doi:10.3762/bjnano.8.80

Graphical Abstract
  • main advantage of recombinant DNA technology is the ability to control the distribution of lysines and the SNA15 bioactive domain along the recombinamer chain. Elastin-like recombinamer hydrogel formation Click reactions are a class of reaction that can often also be performed in biological fluids
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2017

A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a

  • Maryam Daneshpour,
  • Kobra Omidfar and
  • Hossein Ghanbarian

Beilstein J. Nanotechnol. 2016, 7, 2023–2036, doi:10.3762/bjnano.7.193

Graphical Abstract
  • ® Premix Ex Taq™ II (TAKARA BIO INC.) according to the protocol of the manufacturer. The obtained Ct values were considered for plotting the standard curve. Spiked sample analysis In order to study the nanobiosensor performance in biological fluids, the serum sample was used instead of hybridization buffer
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2016

Surface coating affects behavior of metallic nanoparticles in a biological environment

  • Darija Domazet Jurašin,
  • Marija Ćurlin,
  • Ivona Capjak,
  • Tea Crnković,
  • Marija Lovrić,
  • Michal Babič,
  • Daniel Horák,
  • Ivana Vinković Vrček and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 246–262, doi:10.3762/bjnano.7.23

Graphical Abstract
  • biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids
  • regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type
  • of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible. Keywords: biological fluids; colloidal stability; maghemite; nanoparticles
PDF
Album
Full Research Paper
Published 15 Feb 2016

Au nanoparticle-based sensor for apomorphine detection in plasma

  • Chiara Zanchi,
  • Andrea Lucotti,
  • Matteo Tommasini,
  • Sebastiano Trusso,
  • Ugo de Grazia,
  • Emilio Ciusani and
  • Paolo M. Ossi

Beilstein J. Nanotechnol. 2015, 6, 2224–2232, doi:10.3762/bjnano.6.228

Graphical Abstract
  • toward small species, such as drug molecules, with respect to a more bulky chemical species, for example, proteins in biological fluids. It is noteworthy that the above-discussed features of the artificially roughened surface in Figure 1A are homogeneous over areas of the order of 5 × 103 nm2, as shown
  • interacting with the gold surface. The rapid acquisition time, together with a relatively low laser power, represent promising conditions for a rapid method for the measurement of the concentration of drugs in biological fluids. A spot size of about 1 µm ensures the collection of an average SERS signal from
  • transfer to APO detection in biological fluids. Experiments performed on unfiltered blood plasma with different APO concentrations proved the applicability of the proposed method to APO detection for samples of clinical origin. (A, B) SEM micrographs of the surface morphology of a gold substrate deposited
PDF
Album
Full Research Paper
Published 26 Nov 2015
Other Beilstein-Institut Open Science Activities